A Spinoff: A IO-SFC Dynamic Model for Italy

Marco Veronese Passarella

University of L'Aquila and University of Leeds

Download this presentation from:

www.marcopassarella.it

Introduction

 JUST2CE: EU-funded project proposing an alternative way of looking at CE.

- JUST2CE: EU-funded project proposing an alternative way of looking at CE.
- Most projects have focused on how to produce circularity; JUST2CE focuses on what (democratic participation, gender, global justice).

- JUST2CE: EU-funded project proposing an alternative way of looking at CE.
- Most projects have focused on how to produce circularity; JUST2CE focuses on what (democratic participation, gender, global justice).
- Two main milestones/deliverables linked to WP5:

- JUST2CE: EU-funded project proposing an alternative way of looking at CE.
- Most projects have focused on how to produce circularity; JUST2CE focuses on what (democratic participation, gender, global justice).
- Two main milestones/deliverables linked to WP5:
 - A systematic review of current literature on macroeconomic models for assessing the transition towards a CE (Codina et al., 2025a).

- JUST2CE: EU-funded project proposing an alternative way of looking at CE.
- Most projects have focused on how to produce circularity; JUST2CE focuses on what (democratic participation, gender, global justice).
- Two main milestones/deliverables linked to WP5:
 - A systematic review of current literature on macroeconomic models for assessing the transition towards a CE (Codina et al., 2025a).
 - A formal model to simulate and compare alternative CE policies and transition scenarios (Codina et al., 2025b).

 Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:
 - Calibration: steady state achieved through equation inversion instead of an interative search algorithm.

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:
 - Calibration: steady state achieved through equation inversion instead of an interative search algorithm.
 - Foreign sector: stylised foreign sector instead of a two-area model.

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:
 - Calibration: steady state achieved through equation inversion instead of an interative search algorithm.
 - Foreign sector: stylised foreign sector instead of a two-area model.
 - Exchange rate: floating regime instead of a fixed regime.

- Codina et al. (2025b) use a 2A-IO-SFC model to assess and compare CE transition scenarios in Europe (and RoW).
- I use a similar model to simulate energy transition in Italy.
- Four main differences:
 - Calibration: steady state achieved through equation inversion instead of an interative search algorithm.
 - Foreign sector: stylised foreign sector instead of a two-area model.
 - Exchange rate: floating regime instead of a fixed regime.
 - Ecosystem: GHG emissions only instead of a fully developed environmental block.

RECLASSIFIED BALANCE-SHEET OF ITALY IN 2021

	Workers	Rentiers	Firms	Government	Banks	Central bank	Foreign	Total	
Cash and reserves	130.44	70.24	0.00	0.00	10.82	-211.5	0.00	0.00	
Deposits	1656.88	1355.62	0.00	0.00	-3012.50	0.00	0.00	0.00	
Loans	-572.61	-190.87	-871.9	0.00	1635.39	0.00	0.00	0.00	
Advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
T-bills	34.99	198.27	0.00	-2678.4	1366.29	211.5	867.34	0.00	
Domestic securities	686.26	6041.83	-6728.1	0.00	0.00	0.00	0.00	0.00	
Foreign securities	0.00	867.34	0.00	0.00	0.00	0.00	-867.34	0.00	
Capital stock	0.00	0.00	7600.00	0.00	0.00	0.00	0.00	7600.00	
Net financial wealth	-1935.96	-8342.43	0.00	2678.4	0.00	0.00	0.00	-7600.00	
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

RECLASSIFIED TRANSACTIONS-FLOW MATRIX

	Workers	Rentiers	Fin	ms	Government	Banks	Central bank	Foreign	Total
			Current	Capital					
Consumption	-407.94	-622.18	1030.12	0.00	0.00	0.00	0.00	0.00	0.00
Investment	0.00	0.00	357.21	-357.21	0.00	0.00	0.00	0.00	0.00
Government spending	0.00	0.00	394.72	0.00	-394.72	0.00	0.00	0.00	0.00
Export	0.00	0.00	582.19	0.00	0.00	0.00	0.00	-582.19	0.00
Import	0.00	0.00	-582.19	0.00	0.00	0.00	0.00	582.19	0.00
[Value added]			[1782.05]						
Wages	624.62	32.88	-657.50	0.00	0.00	0.00	0.00	0.00	0.00
Deprec. / Amort.	0.00	0.00	-357.21	357.21	0.00	0.00	0.00	0.00	0.00
Firms profit	0.00	653.34	-653.34	0.00	0.00	0.00	0.00	0.00	0.00
Banks profit	0.00	38.19	0.00	0.00	0.00	-38.19	0.00	0.00	0.00
Tax revenue	-218.74	-200.65	0.00	0.00	419.39	0.00	0.00	0.00	0.00
Interests on reserves	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on deposits	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on loans	-8.59	-2.86	-13.08	0.00	0.00	24.53	0.00	0.00	0.00
Interests on advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Interests on T-bills	0.35	1.98	0.00	0.00	-26.78	13.66	2.11	8.67	0.00
Interests on domestic sec.s	10.29	90.63	-100.92	0.00	0.00	0.00	0.00	0.00	0.00
Interests on foreign sec.s	0.00	8.67	0.00	0.00	0.00	0.00	0.00	-8.67	0.00
Seigniorage income	0.00	0.00	0.00	0.00	2.11	0.00	-2.11	0.00	0.00
Change in cash and reserves	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in deposits	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in loans	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in advances	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in T-bills	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in domestic sec.s	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Change in foreign sec.s	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TECHNICAL COEFFICIENTS FROM IO TABLE

Code	Α	В	C*	C19	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S
A	0.0698	0.0014	0.0220	0.0007	0.0166	0.0024	0.0006	0.0062	0.0014	0.0223	0.0006	0.0003	0.0001	0.0015	0.0057	0.0015	0.0007	0.0010	0.0046	0.003
3	0.0002	0.0104	0.0009	0.0655	0.0059	0.0010	0.0014	0.0008	0.0015	0.0008	0.0001	0.0001	0.0001	0.0002	0.0002	0.0004	0.0003	0.0009	0.0005	0.000
*	0.1033	0.0569	0.2647	0.0289	0.0317	0.0686	0.1150	0.0435	0.0591	0.1342	0.0442	0.0135	0.0091	0.0525	0.0771	0.0157	0.0085	0.0736	0.0509	0.05
219	0.0138	0.0216	0.0032	0.0562	0.0046	0.0043	0.0048	0.0031	0.0238	0.0008	0.0002	0.0005	0.0001	0.0005	0.0012	0.0006	0.0008	0.0004	0.0010	0.00
)	0.0213	0.0200	0.0165	0.0107	0.3398	0.0317	0.0044	0.0123	0.0170	0.0259	0.0084	0.0038	0.0010	0.0092	0.0018	0.0182	0.0108	0.0154	0.0113	0.05
1	0.0069	0.0492	0.0112	0.0058	0.0080	0.1266	0.0113	0.0049	0.0067	0.0148	0.0040	0.0008	0.0006	0.0026	0.0043	0.0417	0.0024	0.0049	0.0067	0.00
	0.0116	0.0129	0.0078	0.0033	0.0055	0.0150	0.1861	0.0099	0.0150	0.0065	0.0106	0.0041	0.0176	0.0164	0.0136	0.0159	0.0042	0.0131	0.0092	0.00
ì	0.0712	0.0602	0.0824	0.0994	0.0344	0.0306	0.0319	0.0612	0.0530	0.0703	0.0399	0.0274	0.0039	0.0283	0.0400	0.0096	0.0064	0.0370	0.0340	0.02
4	0.0202	0.0570	0.0324	0.0699	0.0395	0.0493	0.0212	0.0654	0.1710	0.0176	0.0103	0.0061	0.0011	0.0113	0.0258	0.0132	0.0062	0.0115	0.0130	0.01
	0.0020	0.0094	0.0035	0.0264	0.0053	0.0043	0.0127	0.0039	0.0128	0.0033	0.0046	0.0010	0.0011	0.0047	0.0143	0.0037	0.0087	0.0041	0.0017	0.00
	0.0022	0.0640	0.0123	0.0043	0.0126	0.0226	0.0089	0.0256	0.0171	0.0213	0.1431	0.0303	0.0018	0.0329	0.0198	0.0128	0.0053	0.0101	0.0345	0.01
<	0.0139	0.0148	0.0159	0.0051	0.0177	0.0156	0.0216	0.0455	0.0230	0.0197	0.0196	0.2118	0.0358	0.0174	0.0235	0.0231	0.0049	0.0109	0.0241	0.02
-	0.0010	0.0160	0.0091	0.0010	0.0058	0.0118	0.0104	0.0479	0.0204	0.0514	0.0272	0.0242	0.0083	0.0196	0.0166	0.0109	0.0103	0.0180	0.0280	0.02
N																	0.0181			
ı																	0.0128			
)																	0.0023			
>																	0.0101			
5																	0.0066			
₹																	0.0011			
5	0.0037	0.0026	0.0013	0.0093	0.0014	0.0082	0.0024	0.0011	0.0019	0.0016	0.0030	0.0007	0.0003	0.0037	0.0109	0.0046	0.0025	0.0079	0.0087	0.0

Industrial Structure

- Input-output relations

INDUSTRIAL STRUCTURE

- Input-output relations
 - (1) Total output: $\mathbf{x} = [\mathbf{I} \mathbf{A}]^{-1} \cdot \mathbf{d}$

Industrial Structure

- Input-output relations
 - (1) Total output: $\mathbf{x} = [\mathbf{I} \mathbf{A}]^{-1} \cdot \mathbf{d}$
 - (2) Domestic demand: $\mathbf{d} = \beta_w \cdot c_w + \beta_z \cdot c_z + \iota \cdot i_d + \mathbf{gov} + \chi \cdot ex$

- Input-output relations
 - (1) Total output: $\mathbf{x} = [\mathbf{I} \mathbf{A}]^{-1} \cdot \mathbf{d}$
 - (2) Domestic demand: $\mathbf{d} = \beta_w \cdot c_w + \beta_z \cdot c_z + \iota \cdot i_d + \mathbf{gov} + \chi \cdot ex$
 - (3) Net value added: $Y_n = \mathbf{p}^T \cdot (\mathbf{x} \cdot [\mathbf{I} \mathbf{A}]) \mathbf{p}_m^T \cdot \psi \cdot im$

- Unit prices and mark-ups

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \mu \odot \mathbf{h}$

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \mu \odot \mathbf{h}$
 - (5) Capital amortisation coefficients: $\mathbf{h} = (1 + \kappa \cdot \delta)$

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \mu \odot \mathbf{h}$
 - (5) Capital amortisation coefficients: $\mathbf{h} = (1 + \kappa \cdot \delta)$
 - (6) Mark-ups: $\mu = \mu_0 + \mu_1 \cdot (\mathbf{x}_{-1} \mathbf{x}_{-1}^*)$

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \mu \odot \mathbf{h}$
 - (5) Capital amortisation coefficients: $\mathbf{h} = (1 + \kappa \cdot \delta)$
 - (6) Mark-ups: $\mu = \mu_0 + \mu_1 \cdot (\mathbf{x}_{-1} \mathbf{x}_{-1}^*)$
 - (7) Potential outputs: $x^* = x_{-1}^* \phi \cdot (x_{-1}^* x_{-1})$

- Unit prices and mark-ups
 - (4) Price equation: $\mathbf{p}^T = \mathbf{w} \odot \mathbf{I} + \mathbf{p}^T \cdot \mathbf{A} \odot \boldsymbol{\mu} \odot \mathbf{h}$
 - (5) Capital amortisation coefficients: $\mathbf{h} = (1 + \kappa \cdot \delta)$
 - (6) Mark-ups: $\mu = \mu_0 + \mu_1 \cdot (\mathbf{x}_{-1} \mathbf{x}_{-1}^*)$
 - (7) Potential outputs: $x^* = x_{-1}^* \phi \cdot (x_{-1}^* x_{-1})$
 - (8) Working-class consumer price index: $p_w = \mathbf{p}^T \cdot \boldsymbol{\beta}_w$

- Income and consumption

- Income and consumption
 - (9) Workers' disposable income:

$$YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$$

- Income and consumption
 - (9) Workers' disposable income:

$$YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$$

(10) Net wealth:
$$V_w = V_{w,-1} + YD_w - p_w \cdot c_w$$

- Income and consumption
 - (9) Workers' disposable income:

$$YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$$

- (10) Net wealth: $V_w = V_{w,-1} + YD_w p_w \cdot c_w$
- (11) Consumption function: $c_w = \alpha_0^w + \alpha_1^w \cdot \frac{YD_w + CG_w}{p_w^e} + \alpha_2 \cdot \frac{V_{w,-1}}{p_w}$

- Income and consumption
 - (9) Workers' disposable income:

$$YD_w = WB \cdot (1 - \omega) + PAYM_w^A - PAYM_w^L - T_w$$

- (10) Net wealth: $V_w = V_{w-1} + YD_w p_w \cdot c_w$
- (11) Consumption function: $c_w = \alpha_0^w + \alpha_1^w \cdot \frac{YD_w + CG_w}{p_w^e} + \alpha_2 \cdot \frac{V_{w,-1}}{p_w}$
- (12) Personal loans: $L_w = L_{w,-1} \cdot (1 \delta_w) + \theta_w \cdot YD_w$

Non-Financial Firms

- Capital and investment decisions

Non-Financial Firms

Introduction

- Capital and investment decisions

(13) Target capital stock:
$$k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$$

Non-Financial Firms

Introduction

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$

EQUATIONS

(14) Investment function: $i_d = \gamma \cdot (k^* - k_{-1}) + da$

Non-Financial Firms

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$

Non-Financial Firms

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$
- Firms' financial accounts

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$
- Firms' financial accounts
 - (17) Total profits: $\Pi_f = Y_n WB AF PAYM_f^L PAYM_f^E$

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$
- Firms' financial accounts
 - (17) Total profits: $\Pi_f = Y_n WB AF PAYM_f^L PAYM_f^E$
 - (18) Retained profits: $\Pi_u = \eta \cdot \Pi_f$

- Capital and investment decisions
 - (13) Target capital stock: $k^* = \frac{\mathbf{p}_{-1}^T \cdot (\kappa_{-1} \odot \mathbf{x}_{-1})}{p_{id,-1}}$
 - (14) Investment function: $i_d = \gamma \cdot (k^* k_{-1}) + da$
 - (15) Depreciation: $da = \delta \cdot k_{-1}$
 - (16) Capital stock evolution: $k = k_{-1} + i_d da$
- Firms' financial accounts
 - (17) Total profits: $\Pi_f = Y_n WB AF PAYM_f^L PAYM_f^E$
 - (18) Retained profits: $\Pi_u = \eta \cdot \Pi_f$
 - (19) Firms' net borrowing: $L_f = L_{f,-1} + p_{id} \cdot id AF \Pi_u \Delta E_s$

- Loans and Reserves

- Loans and Reserves
 - (20) Net stock of loans demanded by firms:

$$L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

- Loans and Reserves
 - (20) Net stock of loans demanded by firms:

$$L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

(21) Supply of loans:
$$L_s = L_{s,-1} + \Delta L_f$$

- Loans and Reserves
 - (20) Net stock of loans demanded by firms:

$$L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

- (21) Supply of loans: $L_s = L_{s,-1} + \Delta L_f$
- (22) Bank reserves: $H_b = \rho \cdot M_{s,-1}$

BANKS AND FINANCE

- Loans and Reserves
 - (20) Net stock of loans demanded by firms:

$$L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

- (21) Supply of loans: $L_s = L_{s,-1} + \Delta L_f$
- (22) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet

BANKS AND FINANCE

- Loans and Reserves
 - (20) Net stock of loans demanded by firms:

$$L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

- (21) Supply of loans: $L_s = L_{s,-1} + \Delta L_f$
- (22) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet
 - (23) Government securities held by banks: $B_b = M_s L_d H_b$

BANKS AND FINANCE

- Loans and Reserves
 - (20) Net stock of loans demanded by firms:

$$L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

- (21) Supply of loans: $L_s = L_{s,-1} + \Delta L_f$
- (22) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet
 - (23) Government securities held by banks: $B_b = M_s L_d H_b$
 - (24) Bank advances: $A_d = -B_b$, if $B_b < 0$

- Loans and Reserves
 - (20) Net stock of loans demanded by firms:

$$L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

- (21) Supply of loans: $L_s = L_{s,-1} + \Delta L_f$
- (22) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet
 - (23) Government securities held by banks: $B_b = M_s L_d H_b$
 - (24) Bank advances: $A_d = -B_b$, if $B_b < 0$
- Bank Profits

- Loans and Reserves
 - (20) Net stock of loans demanded by firms:

$$L_f = L_{f,-1} + p_{id} \cdot id - AF - \Pi_u - \Delta E_s$$

- (21) Supply of loans: $L_s = L_{s,-1} + \Delta L_f$
- (22) Bank reserves: $H_b = \rho \cdot M_{s,-1}$
- Bank Balance Sheet
 - (23) Government securities held by banks: $B_b = M_s L_d H_b$
 - (24) Bank advances: $A_d = -B_b$, if $B_b < 0$
- Bank Profits
 - (25) Bank profits:

THE LABOUR MARKET

- Employment and Wages

THE LABOUR MARKET

Introduction

- Employment and Wages

(26) Total wages: $WB = \mathbf{w}^T \cdot \mathbf{n}$

THE LABOUR MARKET

- Employment and Wages
 - (26) Total wages: $WB = \mathbf{w}^T \cdot \mathbf{n}$
 - (27) Employment levels: $\mathbf{n} = \mathbf{I} \odot \mathbf{x}$

- Employment and Wages
 - (26) Total wages: $WB = \mathbf{w}^T \cdot \mathbf{n}$
 - (27) Employment levels: $\mathbf{n} = \mathbf{I} \odot \mathbf{x}$
 - (28) Total employment: $N = \mathbf{I}^T \cdot \mathbf{x} = \sum_{i=1}^{20} n_i$

INTEREST RATES AND RISK PREMIA

- Interest rate setting

Interest Rates and Risk Premia

- Interest rate setting

(29) Policy rate: $r = r^*$

INTEREST RATES AND RISK PREMIA

- Interest rate setting
 - (29) Policy rate: $r = r^*$
 - (30) Interest rate on deposits: $r_m = r + \mu_m$

- Interest rate setting

- (29) Policy rate: $r = r^*$
- (30) Interest rate on deposits: $r_m = r + \mu_m$
- (31) Interest payments: $PAYM_f^L = r_{l,-1} \cdot L_{f,-1}$

- Government Revenues and Expenditures

- Government Revenues and Expenditures
 - (32) Net taxes paid by workers:

$$T_w = au_w^w \cdot WB \cdot (1 - \omega) + au_z \cdot PAYM_w^A + au_v \cdot V_{w,-1}$$

- Government Revenues and Expenditures
 - (32) Net taxes paid by workers:

$$T_w = au_w^w \cdot WB \cdot (1 - \omega) + au_z \cdot PAYM_w^A + au_v \cdot V_{w,-1}$$

(33) Government spending:
$$\mathbf{gov} = \mathbf{gov}_{-1} + \gamma_0^g - \zeta \cdot \gamma_1^g \cdot \frac{DEF_{-1}}{p_{g,-1}}$$

- Government Revenues and Expenditures
 - (32) Net taxes paid by workers:

$$T_w = \tau_w^w \cdot WB \cdot (1 - \omega) + \tau_z \cdot PAYM_w^A + \tau_v \cdot V_{w,-1}$$

- (33) Government spending: $\mathbf{gov} = \mathbf{gov}_{-1} + \gamma_0^g \zeta \cdot \gamma_1^g \cdot \frac{DEF_{-1}}{P_{-1}}$
- (34) Government deficit: $DEF = p_g \cdot gov + PAYM_{\sigma}^B - PAYM_{\sigma}^{cb} - TAX$

- Government Revenues and Expenditures
 - (32) Net taxes paid by workers:

$$T_{w} = \tau_{w}^{w} \cdot WB \cdot (1 - \omega) + \tau_{z} \cdot PAYM_{w}^{A} + \tau_{v} \cdot V_{w,-1}$$

- (33) Government spending: $\mathbf{gov} = \mathbf{gov}_{-1} + \gamma_0^g \zeta \cdot \gamma_1^g \cdot \frac{\mathit{DEF}_{-1}}{p_{g,-1}}$
- (34) Government deficit: $DEF = p_g \cdot gov + PAYM_g^B PAYM_g^{cb} TAX$
- (35) Government debt accumulation: $B_s = B_{s,-1} + DEF$

THE CENTRAL BANK

- Central Bank Operations

THE CENTRAL BANK

- Central Bank Operations
 - (36) Government securities held by the central bank:

$$B_{cb} = B_s - B_h - B_b - B_{row}$$

THE CENTRAL BANK

Introduction

- Central Bank Operations
 - (36) Government securities held by the central bank:

$$B_{cb} = B_s - B_h - B_b - B_{row}$$

(37) Cash issuance by the central bank: $H_s = H_{s,-1} + \Delta B_s$

PORTFOLIO EQUATIONS

- Asset Allocation by Workers

- Asset Allocation by Workers
 - (38) Government securities held by workers:

$$\frac{B_{w}}{V_{w}} = \lambda_{10}^{w} - \lambda_{11}^{w} \cdot r_{m} + \lambda_{12}^{w} \cdot r_{b} - \lambda_{13}^{w} \cdot r_{e} - \lambda_{14}^{w} \cdot (r_{q} + r_{cg}) - \lambda_{15}^{w} \cdot \frac{YD_{w}}{V_{w}}$$

Introduction

PORTFOLIO EQUATIONS

- Asset Allocation by Workers
 - (38) Government securities held by workers:

$$\frac{B_{w}}{V_{w}} = \lambda_{10}^{w} - \lambda_{11}^{w} \cdot r_{m} + \lambda_{12}^{w} \cdot r_{b} - \lambda_{13}^{w} \cdot r_{e} - \lambda_{14}^{w} \cdot (r_{q} + r_{cg}) - \lambda_{15}^{w} \cdot \frac{YD_{w}}{V_{w}}$$

(39) Cash demand by workers: $H_w = \lambda_c^w \cdot c_{w,-1}$

PORTFOLIO EQUATIONS

- Asset Allocation by Workers
 - (38) Government securities held by workers: $\frac{B_w}{V_w} = \lambda_{10}^w \lambda_{11}^w \cdot r_m + \lambda_{12}^w \cdot r_b \lambda_{13}^w \cdot r_e \lambda_{14}^w \cdot (r_q + r_{cg}) \lambda_{15}^w \cdot \frac{YD_w}{V_w}$
 - (39) Cash demand by workers: $H_w = \lambda_c^w \cdot c_{w,-1}$
 - (40) Bank deposits as a buffer stock: $M_w = V_w + L_w - H_w - B_w - E_w$

FOREIGN SECTOR

- Trade balance

FOREIGN SECTOR

- Trade balance

(41) Exports:
$$ln(ex) = \epsilon_0 - \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$$

FOREIGN SECTOR

- Trade balance
 - (41) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$
 - (42) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{\rho_m, -1}{\rho_{x_1} 1}) + \nu_2 \cdot ln(\frac{\gamma_n}{\rho})$

- Trade balance
 - (41) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{p_x}{p_m}) + \epsilon_2 \cdot ln(y_f)$
 - (42) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{p_x, -1}) + \nu_2 \cdot ln(\frac{Y_n}{p})$
 - (43) Domestic securities held by foreign sector: $B_{\text{row}} = B_{\text{row}} 1 CAB + \Delta Q_{\text{s}}$

- Trade balance
 - (41) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{\rho_x}{\rho_{rr}}) + \epsilon_2 \cdot ln(y_f)$
 - (42) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{n, -1}) + \nu_2 \cdot ln(\frac{Y_n}{n})$
 - (43) Domestic securities held by foreign sector: $B_{row} = B_{row-1} - CAB + \Delta Q_s$
 - (44) Nominal exchange rate: $xr = \frac{(1+\bar{r}_f) \cdot xr^e}{(1+\bar{r})}$

- Trade balance
 - (41) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{\rho_x}{\rho_{rr}}) + \epsilon_2 \cdot ln(y_f)$
 - (42) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{p_m, -1}) + \nu_2 \cdot ln(\frac{\gamma_n}{p_m})$
 - (43) Domestic securities held by foreign sector: $B_{row} = B_{row-1} - CAB + \Delta Q_s$
 - (44) Nominal exchange rate: $xr = \frac{(1+\bar{r}_f) \cdot xr^e}{(1+\bar{r})}$

 - (45) Expected exchange rate: $xr^e = xr_{-1} + \sigma_{vr}^1 \cdot (xr^* xr_{-1})$

Introduction

Trade balance

- (41) Exports: $ln(ex) = \epsilon_0 \epsilon_1 \cdot ln(\frac{p_x}{p_x}) + \epsilon_2 \cdot ln(y_f)$
- (42) Imports: $ln(im) = \nu_0 \nu_1 \cdot ln(\frac{p_m, -1}{p_m 1}) + \nu_2 \cdot ln(\frac{Y_n}{p_m})$
- (43) Domestic securities held by foreign sector:

$$B_{row} = B_{row,-1} - CAB + \Delta Q_s$$

- (44) Nominal exchange rate: $xr = \frac{(1+\bar{r}_f) \cdot xr^e}{(1+\bar{r})}$
- (45) Expected exchange rate: $xr^e = xr_{-1} + \sigma_{vr}^1 \cdot (xr^* xr_{-1})$
- (46) Long-run exchange rate: $xr^* = xr^* \sigma_{vr}^2 \cdot CAB$

PRICE EXPECTATIONS

- Price expectations:

PRICE EXPECTATIONS

- Price expectations:
 - (47) Expected inflation rate: $\pi_w^e = \pi_{w,-1} + \sigma_w \cdot (\bar{\pi} \pi_{w,-1})$

PRICE EXPECTATIONS

- Price expectations:
 - (47) Expected inflation rate: $\pi_w^e = \pi_{w,-1} + \sigma_w \cdot (\bar{\pi} \pi_{w,-1})$
 - (48) Expected price level (for working class): $p_w^e = p_{w,-1} \cdot (1+\pi_w^e)$

ENVIRONMENTAL IMPACT

- Emissions accounting

Environmental Impact

- Emissions accounting
 - (49) Sectoral emissions: **emis** = $\epsilon \odot \mathbf{x}$

ENVIRONMENTAL IMPACT

- Emissions accounting
 - (49) Sectoral emissions: **emis** = $\epsilon \odot x$
 - (50) Total emissions: $EMIS = \epsilon^T \cdot \mathbf{x} = \sum_{i=1}^{20} emis_i$

HIDDEN EQUATION

- Redundant equation

HIDDEN EQUATION

Introduction

- Redundant equation

(37.B) Cash supply:
$$H_s = H_w + H_z + H_b$$

- Model implemented in an R environment.

- Model implemented in an R environment.
- Equations expressed in discrete time.

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods
- Data for each industry derived from Eurostat (2020, annual):

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods
- Data for each industry derived from Eurostat (2020, annual):
 - Technical coefficients

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods
- Data for each industry derived from Eurostat (2020, annual):
 - Technical coefficients
 - Labour coefficients

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods
- Data for each industry derived from Eurostat (2020, annual):
 - Technical coefficients
 - Labour coefficients
 - Greenhouse gas emissions coefficients

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0 001
 - Each period represents one year
 - Simulations cover 30 periods
- Data for each industry derived from Eurostat (2020, annual):
 - Technical coefficients
 - Labour coefficients
 - Greenhouse gas emissions coefficients
 - Capital-to-output ratios

- Model implemented in an R environment.
- Equations expressed in discrete time.
- System of difference equations solved simultaneously:
 - Maximum of 100 iterations per period
 - Tolerance level of 0.001
 - Each period represents one year
 - Simulations cover 30 periods
- Data for each industry derived from Eurostat (2020, annual):
 - Technical coefficients
 - Labour coefficients
 - Greenhouse gas emissions coefficients
 - Capital-to-output ratios
 - Demand shares (including import shares)

 Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth

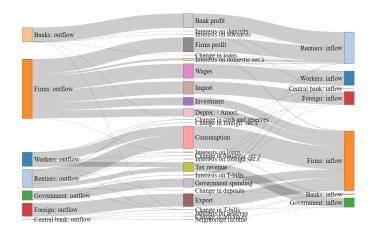
- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Average tax rate

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Average tax rate
 - Autonomous portfolio coefficients


- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Average tax rate
 - Autonomous portfolio coefficients
- Remaining parameters and exogenous variables sourced from Canelli et al. (2022).

CALIBRATION AND SOURCES

- Key coefficients calibrated to match observed data for the Italian economy in 2021 (steady-state assumption):
 - Propensity to consume out of wealth
 - Loan repayment rate
 - Capital depreciation rate
 - Actual reserve requirement ratio
 - Average tax rate
 - Autonomous portfolio coefficients
- Remaining parameters and exogenous variables sourced from Canelli et al. (2022).
- Unit prices normalized to one in 2021.

Cross-sector transactions in 2021

Cross-industry interdependencies in 2021

Baseline Assumptions and Shocks

- Steady state in 2021: DEF = 0, CAB = 0, C = YD.

Baseline Assumptions and Shocks

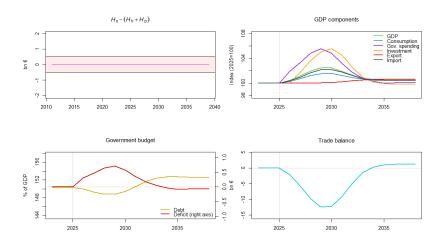
- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.

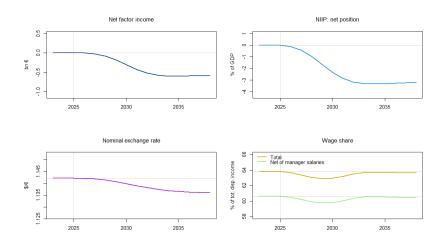
BASELINE ASSUMPTIONS AND SHOCKS

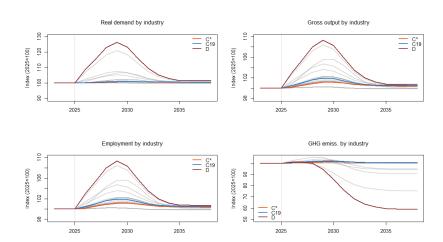
- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry \rightarrow one technique \rightarrow one product.

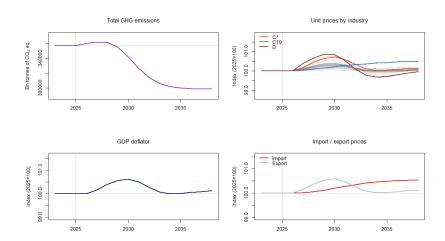
- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry \rightarrow one technique \rightarrow one product.
- Alternative scenario: higher share of renewables + greener production following government spending (100 bn euros).

BASELINE ASSUMPTIONS AND SHOCKS


- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry \rightarrow one technique \rightarrow one product.
- Alternative scenario: higher share of renewables + greener production following government spending (100 bn euros).
- Targeted industries: A (agriculture), D (electricity, gas, etc.), E (water, waste, etc.), F (construction), H (transportation).




Baseline Assumptions and Shocks


- Steady state in 2021: DEF = 0, CAB = 0, C = YD.
- Prices are unity in 2021, so that value coefficients equal technical coefficients.
- One industry \rightarrow one technique \rightarrow one product.
- Alternative scenario: higher share of renewables + greener production following government spending (100 bn euros).
- Targeted industries: A (agriculture), D (electricity, gas, etc.), E (water, waste, etc.), F (construction), H (transportation).
- Sigmoid adjustment of spending (and return to pre-shock level).

- The new calibration method has drawbacks, but it is simpler, quicker, and more reliable.

FINAL REMARKS

- The new calibration method has drawbacks, but it is simpler, quicker, and more reliable.
- The model works smoothly and is watertight. However, IO relations must be carefully double-checked.

- The new calibration method has drawbacks, but it is simpler, quicker, and more reliable.
- The model works smoothly and is watertight. However, IO relations must be carefully double-checked.
- Key message from early experiments: the transition takes time (rebound) and is likely to have uneven effects on different social groups.

Thank you

Download this presentation from: www.marcopassarella.it

EXPERIMENTS

Remarks